clc; pathname=get_absolute_file_path('3_10_soln.sce') filename=pathname+filesep()+'3_10_data.sci' exec(filename) // Solution: // Acceleration due to gravity, g=32.2; //ft/s^2 // Energy Equation between Station 1 and Station 2 is given by, // (Z1+P1+K1+Hp-Hm-Hl)=(Z2+P2+K2) // since, There is no Hydraulic motor between Station 1 and 2, // Therefore Motor Head, Hm=0; //ft // also, cross section of oil tank is very large, as a result oil is at rest, v1=0; //ft/s // Kinetic Energy Head at inlet, K1=(v1^2)/(2*g); //ft // Height of Station 1 from Datum, Z1=0; //ft // Height of Station 2 from Datum, Z2=20; //ft // Pressure Head at inlet, P1=p1/SG; //ft // Pump Head, Hp=ceil((3950*HHP)/(Q*SG)); //ft // Pump flow, Q_1=Q/449; //ft^3/s // Area of pipe, A=((%pi)*((D/12)^2))/4; //ft^2 // Therefore, velocity in pipe, v2=Q_1/A; //ft/s // Kinetic Energy head at Station 2, K2=(v2^2)/(2*g); //ft // Therefore, Pressure Head at outlet, P2=Z1+P1+K1+Hp-Hm-Hl-Z2-K2; //ft // specific weight of oil, gamma1=SG*62.4; //lb/ft^3 // Pressure available at inlet of hydraulic motor at station 2, p2=P2*gamma1; // lb/ft^2 p2=floor(p2/144); //psi // Results: printf("\n Results: ") printf("\n The Pressure available at inlet of hydraulic motor at Station 2 is %.0f psig.",p2)