// PG (200) deff('[y]=f(x)','y=exp(x)') xset('window',0); x=-1:.01:1; // defining the range of x. y=feval(x,f); a=gca(); a.y_location = "origin"; a.x_location = "origin"; plot(x,y) // instruction to plot the graph // possible approximation // y = q1(x) // Let e(x) = exp(x) - [a0+a1*x] // q1(x) & exp(x) must be equal at two points in [-1,1], say at x1 & x2 // sigma1 = max(abs(e(x))) // e(x1) = e(x2) = 0. // By another argument based on shifting the graph of y = q1(x), // we conclude that the maximum error sigma1 is attained at exactly 3 points. // e(-1) = sigma1 // e(1) = sigma1 // e(x3) = -sigma1 // x1 < x3 < x2 // Since e(x) has a relative minimum at x3, we have e'(x) = 0 // Combining these 4 equations, we have.. // exp(-1) - [a0-a1] = sigma1 ------------------(i) // exp(1) - [a0+a1] = p1 -----------------------(ii) // exp(x3) - [a0+a1*x3] = -sigma1 --------------(iii) // exp(x3) - a1 = 0 ----------------------------(iv) // These have the solution a1 = (exp(1) - exp(-1))/2 x3 = log(a1) sigma1 = 0.5*exp(-1) + x3*(exp(1) - exp(-1))/4 a0 = sigma1 + (1-x3)*a1 x = poly(0,"x"); // Thus, q1 = a0 + a1*x deff('[y1]=f(x)','y1=1.2643+1.1752*x') xset('window',0); x=-1:.01:1; // defining the range of x. y=feval(x,f); a=gca(); a.y_location = "origin"; a.x_location = "origin"; plot(x,y) // instruction to plot the graph