clc //Example 14.9 //Parameters of a multiplate clutch //------------------------------------------------------------------------------ //Given Data: //Power capacity P=4000 //Watts //speed N=750 //rev/min //Inner radius Ri=0.04 //m //Outer radius Ro=0.07 //m //coefficient of friction f=0.1 //average allowable pressure pmax=350*(10^3) // N/(m^2) //------------------------------------------------------------------------------ // Assuming uniform wear theory //Axial force F=pmax*%pi*((Ro^2)-(Ri^2)) //Total torque applied T=(P*60)/(2*%pi*N) //Torque per pair of surfaces Tc=F*f*((Ro+Ri)/2) //number of surfaces n=T/Tc n=ceil(n) //This obtained value must be an even number since it is the total number of surfaces, which are in pairs if (n-fix(n./2).*2==0)//For checking if n is even or not. If not, adding 1 to n to make it even n=n else n=n+1 end //Actual Torque Ta=T/n //Actual axial force required: Fa=(2*Ta)/(f*(Ro+Ri)) //Average actual pressure: Pa=Fa/(%pi*((Ro^2)-(Ri^2))) //Maximum actual pressure Pmax=Fa/(2*%pi*(Ro-Ri)*Ri) //------------------------------------------------------------------------------ //Printing result file to .txt res9=mopen(TMPDIR+'9_parameters_of_multiplate_clutch.txt','wt') mfprintf(res9,"(a) Torque capacity of one pair of surfaces, assuming uniform wear is %0.1f Nm\n",Tc) mfprintf(res9,"(b) Total torque applied %0.1f Nm\n",T) mfprintf(res9,"(c) Number of contacting surfaces %d\n",n) mfprintf(res9,"(d) Actual torque per pair of surfaces is %0.1f Nm\n",Ta) mfprintf(res9,"(e) Actual axial force required is %0.1f N\n",Fa) mfprintf(res9,"(f) Maximum torque occurs at inner radius,and is equal to %0.1f kN/m^2",(Pmax*(10^-3))) mclose(res9) editor(TMPDIR+'9_parameters_of_multiplate_clutch.txt') //------------------------------------------------------------------------------ //------------------------------------End of program----------------------------