// Scilab Code Ex3.2 Packing efficiency in diamond structure: Page-92 (2010) // For simplicity we may take radius of the atom, R = 1 unit R = 1; // Radius of the atom in bcc lattice, unit nc = 8; // Number of corner atoms in diamond structure nfcc = 6; // Number of face centred atoms in diamond structure na = 4; // Number of atoms completely within the unit cell n = 1/8*nc+1/2*nfcc+1*na; // Effective number of atoms in the diamond structure V_atom = 8*4/3*%pi*R^3; // Volume of atoms within the unit cell, unit cube // Since for a diamond cubic crystal, the space lattice is fcc, with two atos per lattice point, such that 8*R = sqrt(3)*a, solving for a a = 8*R/sqrt(3); // lattice parameter of diamond structure, unit V_cell = a^3; // Volume of the unit cell, unit cube eta = V_atom/V_cell*100; // Packing efficiency in diamond structure printf("\nThe packing efficiency in diamond structure is : %2.0f percent", eta); //Result // The packing efficiency in diamond structure is : 34 percent