//variable initialization u=1.68*10^-27; //mass of hydrogen atom (kg) m1=16; //mass of oxygen atom in terms u m2=1; //mass of hydrogen atom in terms of u I=1.48*10^-47; //moment of inertia of OH-radical (kg m^2) h_bar=1.054*10^-34; //Planck's constant (joule second) j=5; //energy level of OH-radical c=3*10^8; //speed of light (meter/second) h=6.626*10^-34; //Plank's constant (joule second) //(a) internuclear distance mu=((m1*m2)/(m1+m2))*u; //reduced mass of the molecule (kg) r=(sqrt(I/mu))*10^10; //internuclear distance of molecule (Å) //(b) angular momentum P=h_bar*sqrt(j*(j+1)); //angular momentum of molecule (joule second) //(c) angular velocity omega=P/I; //angular velocity of molecule (radian/second) //(d) wave number B=h/(8*%pi^2*I*c); //rotational constant (m-1) no=2*B*(j+1); //wave no. of line corresponding to transition j=5 to j=6 (m-1) //(e) energy absorbed E=c*h*no; //energy absorbed in the transition j=6 to j=5 (joule) printf("\n(a) r = %.3f Å\n(b) J = %.2e joule second\n(c) ω = %.2e radian/second\n(d) wave number = %.2e m-1\n(e) E = %.1e joule",r,P,omega,no,E);