clc(); clear; // To calculate the pressure drop , heat loss per hour and fil coefficient of heat transfer Tm=70; // Average air temperature in degF Tw=60; // Pipe wall temperature in degF thm=Tm-Tw; // Mean temperature difference in degF // Thm is so small that the fluid properties may be based on 70 degF v=30; // Velocity in ft/sec L=1000; // Length of pipe D=3/12; // Diameter in ft y=0.15; // Specific weight in lb/ft^3 p=0.15/32.2; // Density in slug/ft^3 u=0.00137; // Viscosity in slug/ft/hr Nre=v*3600*D*p/u; // Reynolds number f=0.08/(Nre)^.25; // Nusselt number delp=2*f*L*p*(v^2)/D; // Pressure drop in lb/sq.in printf("The pressure drop is %d lb/sq.ft \n ",delp); cp=0.24*32.2; // Specific heat capacity in slug/degF Cp=0.24*0.15; // Heat capacity in Btu/ft^3-degF k=0.0148; // Thermal conductivity in Btu/ft-hr-degF Npr=u*cp/k; // Prandtls number phi=sqrt(Npr)/(1+(750*sqrt(Npr)/Nre)+7.5*(Npr^0.25)/sqrt(Nre)); A=%pi*L*D; // Area in ft^2 q=phi*f*Cp*A*v*thm*3600/(2*Npr); // Heat loss in Btu/hr printf("Heat loss per hour of air is %f Btu/hr \n ",phi); h=q/(A*thm); // Film coefficient printf("The film coefficient of heat transfer on the inner pipe wall is %.1f Btu/hr-ft^2-degF",h);