//Problem 30.04: For the network shown in Figure 30.9, use Kirchhoff’s laws to determine the magnitude of the current in the (4 + i3)ohm impedance. //initializing the variables: rv1 = 10; // in volts rv2 = 12; // in volts rv3 = 15; // in volts thetav1 = 0; // in degrees thetav2 = 0; // in degrees thetav3 = 0; // in degrees R1 = 4; // in ohm R2 = -1*5*%i; // in ohm R3 = 8; // in ohm R4 = 4; // in ohm R5 = %i*3; // in ohm //calculation: //voltages V1 = rv1*cos(thetav1*%pi/180) + %i*rv1*sin(thetav1*%pi/180) V2 = rv2*cos(thetav2*%pi/180) + %i*rv2*sin(thetav2*%pi/180) V3 = rv3*cos(thetav3*%pi/180) + %i*rv3*sin(thetav3*%pi/180) //Currents I1, I2 and I3 with their directions are shown in Figure 30.10. //Three loops are chosen. The choice of loop directions is arbitrary. loop ABGH, and loopBCFG and loop CDEF Z4 = R4 + R5 //using kirchoff rule in 3 loops //three eqns obtained //R1*I1 + R2*I2 = V1 + V2 //-1*R3*I1 + (R3 + R2)*I2 + R3*I3 = V2 + V3 // -1*R3*I1 + R3*I2 + (R3 + Z4)*I3 = V3 //using determinants d1 = [(V1 + V2) R2 0; (V2 + V3) (R3 + R2) R3; V3 R3 (R3 + Z4)] D1 = det(d1) d2 = [R1 (V1 + V2) 0; -1*R3 (V2 + V3) R3; -1*R3 V3 (R3 + Z4)] D2 = det(d2) d3 = [R1 R2 (V1 + V2); -1*R3 (R3 + R2) (V2 + V3); -1*R3 R3 V3] D3 = det(d3) d = [R1 R2 0; -1*R3 (R3 + R2) R3; -1*R3 R3 (R3 + Z4)] D = det(d) I1 = D1/D I2 = D2/D I3 = D3/D I3mag = (real(I3)^2 + imag(I3)^2)^0.5 printf("\n\n Result \n\n") printf("\n magnitude of the current through (4 + i3)ohm impedance is %.2f A",I3mag)