Zo=50 Er=2.08 B=60*%pi^2/Zo/sqrt(Er) c=3*10^8 f=2*10^9 Ee=1.7875 t=0.159*10^-6 a=5.813*10^7 fGHz=2 A=Zo/60*((Er+1)/2)^(1/2)+(Er-1)/(Er+1)*(0.23+0.11/Er) printf("\nA=%.4f\nB=%.4f",A,B) h=1.59*10^-3 if A>1.52 then W=h*(8*exp(A)/(exp(2*A)-2)) else W=h*(2/%pi*(B-1-log(2*B-1)+(Er-1)/2/Er*(log(B-1)+0.39-0.61/Er))) end printf("\nW=%.6f cm",W) Ere=0.5*(2.08+1+(2.08-1)/sqrt(1+12/3.192094))-(2.08-1)*0.0001/4.6/sqrt(3.1921) printf("\nEre=%.4f",Ere) l=c/(2*f*sqrt(Ee)) printf("\nl=%.6f m",l) We=W/h+0.3979*t/h*(1+log(2*h/t)) printf("\nWe/h=%.4f",We) F=1+1/We*(1-1.25*t/(%pi*h)+1.25/%pi*log(2*h/t)) ac=44.1255*10^-5*F*Zo*Ere/h*sqrt(fGHz/a)*(We+0.667*We/(We+1.444)) printf("\nac=%.4f Np/m",ac) del=0.00040 ad=10.4766*Er/(Er-1)*(Ere-1)/sqrt(Ere)*fGHz*tan(del) printf("\nad=%.4f Np/m",ad) B=2*%pi/(2*l) printf("\nB=%.4f rad/m",B) Q=B/(2*(ac+ad)) printf("\nQ=%.1f",Q)