clear; clc; printf("\t Example 6.4\n"); //table X-- .30 .20 .18 .15 .14 .11 .07 .05 // N-- 1.22 1.22 1.14 .90 .80 .56 .22 .05 //let Ls/A=p p=48; //mass of bone dry solid ais the drying surface v=1.5*1.5*.5; //volume of material Nc=1.22; //in kg/m^2*hr Xcr=0.2; //crtical moisture content X1=0.25; //moisture content on dry basis intially X2=0.08; //moisture content on dry basis finally after drying Xbar=0.025; //equillibrium moisture //tbar=(Ls/(A*Nc))*((Xcr-Xbar)*log((Xcr-Xbar)/(X2-Xbar))); t1=p/(Nc) * (X1-Xcr); //time taken for constant drying rate period //table X-- .18 .15 .14 .11 .07 .05 // 1/N-- .8772 1.11 1.25 1.7857 4.545 20 // equillibrium relation is given under p = [.18 .15 .14 .11 .07 .05]; a = [.8772 1.11 1.25 1.7857 4.545 20]; plot(p,a,"o-"); title("Fig.6.20 Example4 1/N vs X for fallling rate period"); xlabel("X-- Moisture content, X(kg/kg) ---->"); ylabel("Y-- 1/N, hr,m^2/kg ---->"); a=14*.025*1; //area under the curve t2=a*48; //time taken for varying drying period ttotal=t1+t2; //total time taken printf("\n total time for drying the material from 25 to 8 percent moisture under same drying conditions is :%f hr",ttotal); //end