clear; clc; printf("\t Example 2.17\n"); ya2=0; //molefraction at pos.2 ya1=0.1; //molefraction at pos.1 T=(273); //temperature in kelvin pt=1*1.013*10^5; //total pressure in pascal z=2*10^-3; //gas film thickness in m Dab=.198*10^-4; //diffusion coefficient in m^2/s R=8314; //universal gas constant //ammonia is diffusing through an inert film 2mm thick //for gase Dab=T^3/2 //Dab1/Dab2=(T1/T2)^3/2 T2=293; //final temperature in kelvin T1=273; //initial temperature in kelvin Dab1=0.198*10^-4; //initial diffusion coefficient Dab2=((T2/T1)^(3/2))*Dab1; //final diffusion coefficient Na=Dab2*pt*log((1-ya2)/(1-ya1))/(z*R*T2); //diffusion flux in kmol/m^2*s printf("\n flux of diffusion of ammonia through inert film :%f *10^-5 kmol/m^2*s ",Na/10^-5); //if pressure is also incresed from 1 to 5 atm //for gases Dab=(T^3/2)/pt; //Dab1/Dab2=(T1/T2)^3/2*(p2/p1) T2=293; //final temperature in kelvin T1=273; //initial temperature in kelvin pa2=5; //final pressure in atm pa1=1; //initial pressure in atm p=pa2*1.013*10^5; Dab1=.198*10^-4; //initial diffusion coefficient Dab2=((T2/T1)^(3/2))*Dab1*(pa1/pa2); //final diffusion coefficient Na=Dab2*p*log((1-ya2)/(1-ya1))/(z*R*T2); //diffusion flux in kmol/m^2*s printf("\n flux of diffusion of ammonia if temp. is 20 and pressure is 5 atm :%f*10^-5 kmol/m^2*s ",Na/10^-5); printf("\n \n so there is no change in flux when pressure is changed"); //end