clear; //clc(); // Example 6.4 // Page: 113 printf("Example-6.4 Page no.-113\n\n"); //***Data***// m = 1;//[molal] Molality of the solution with respect to ethanol M_water = 18;//[g/mol] molecular weight of water // First we convert molality to mole fraction x_ethanol = m/(m + 1000/M_water); // For the low range of data point on figure 6.5(page 112), we can fit an equation // (Specific volume ) = 0.018032 + 0.037002*x_ethanol - 0.039593*x_ethanol^(2) + 0.21787*x_ethanol^(3) // This is applicable for (0 < x_ethanol < 0.04 ), which is the case we have // So v_tan = 0.018032 + 0.037002*x_ethanol - 0.039593*x_ethanol^(2) + 0.21787*x_ethanol^(3);//[L/mol] // Now we will find the derivative of the specific volume with respect to x_ethanol at the known point x_ethanol // (dv/dx_ethanol) = 0.037002 - 2*0.039593*x_ethanol + 3*0.21787*x_ethanol^(2) // Hence v_derv_tan = 0.037002 - 2*0.039593*x_ethanol + 3*0.21787*x_ethanol^(2);//[L/mol] // By simple geometry from the figure 6.6(page 113) of the book we find // a = v_tan + (1-x_tan)*(dv/dx_1)_tan // b = v_tan - x_tan*(dv/dx_1)_tan // We have a = v_ethanol and b = v_water x_tan = x_ethanol; // So v_ethanol = v_tan + (1-x_tan)*(v_derv_tan);//[L/mol] v_water = v_tan - x_tan*(v_derv_tan);//[L/mol] printf(" Partial molar volume of the ethanol in the given solution is %f L/mol\n",v_ethanol); printf(" Partial molar volume of the water in the given solution is %f L/mol",v_water);