clear; //clc(); // Example 4.2 // Page: 77 printf("Example-4.2 Page no.-77\n\n"); //***Data***// // let we denote graphite by 'g' and diamond by 'd' // Gibb's free energies of graphite and diamond are given by g_g = 0.00;//[kJ/mol] g_d = 2.90;//[kJ/mol] // Specific volumes of graphite and diamond are given by v_g = 5.31*10^(-1);//[kJ/(mol*kbar)] v_d = 3.42*10^(-1);//[kJ/(mol*kbar)] // Now from the equation 4.32 ( page 74) given in the book, we have // (dg/dP) = v , at constant temperature // where 'v' is specific volume // let us denote (dg/dP) by 'D' ,so D_g = v_g;//[J/(mol*Pa)] For graphite D_d = v_d;//[J/(mol*Pa)] For diamond // Now we can take our plot from P = 0( =1 ), however, total pressure is 1 atm. // If we consider specific volumes of the given species to be constant with changing the pressure then g-P curve will be a straight line // So the equation of the line for graphite is // g = D_g*P + g_g // and that for diamond // g = D_d*P + g_d P = [0:1:30]'; plot2d(P,[ D_d*P+g_d D_g*P+g_g ],style=[color("darkgreen"),color("red")]); xlabel("Pressure, P, kbar"); ylabel("Gibb''s free energy per mol, g, kJ/mol"); printf(" Gibb''s free energy-pressure diagram for graphite-diamond system at 25 degC is as shown in the graphic window. "); hl=legend(['Diamond, slope = 0.342 (kJ/mol)/kbar';'Graphite, slope = 0.532 (kJ/mol)/kbar']);