clear; clc; //Example9.1[Heat Loss from Hot Water Pipes] //Given:- l=6;//Length[m] d=0.08;//diameter[m] T_room=20;//[degree Celcius] Ts=70;//Surface temperature of pipe[degree Celcius] Tf=(Ts+T_room)/2;//Film temperature[degree Celcius] //Properties of air at Tf k=0.02699;//[W/m.degree Celcius] Pr=0.7241;//Prandtl number nu=1.750*10^(-5);//[m^2/s] b=(1/(Tf+273));//[K^-1] g=9.81;//Acc dur to gravity[m/s^2] e=1;//Emissivity //Solution:- Lc=d;//Characteristic length[m] Ra_d=g*b*(Ts-T_room)*(d^3)*Pr/(nu^2); disp(Ra_d,"The Rayleigh number is") Nu=((0.6+((0.387*(Ra_d^(1/6)))/((1+((0.559/Pr)^(9/16)))^(8/27))))^2); disp(Nu," The natural convection Nusselt number is") h=k*Nu/d;//[W/m^2.degree Celcius] As=%pi*d*l;//[m^2] Q=h*As*(Ts-T_room);//[W] disp("by natural convection","W",round(Q),"The pipe loses heat to the air in the room at a rate of") Q_rad=e*As*(5.76*10^(-8))*(((Ts+273)^4)-((T_room+273)^4));//[W] disp("W",ceil(Q_rad),"The radiation heat transfer is")