clear; clc; //Example8.6[Heat Loss from the ducts of a Heating System] Ti=80;//Inlet temp[degree Celcius] A=0.2*0.2;//Area of cross section[m^2] l=8;//Length of tube[m] V=0.15;//[m^3/s] Td=60;//Temperature of duct[degree Celcius] //Properties of air at inlet conditions rho=0.9994;//[kg/m^3] Cp=1008;//[J/kg.degree Celcius] k=0.02953;//[W/m.degree Celcius] nu=2.097*10^(-5);//[m^2/s] Pr=0.7154;//Prandtl number //Solution:- Dh=4*A/(4*0.2);//Hydraulic Diameter[m] v_avg=V/A;//[m/s] Re=v_avg*Dh/nu; disp(Re,"Reynolds number is") Lt=10*Dh;//Entry length Nu=0.023*(Re^(0.8))*(Pr^(0.3)); h=Nu*k/Dh;//[W/m^2.degree Celcius] As=4*0.2*l;//[m^2] m_=rho*V;//[kg/s] Te=Td-((Td-Ti)*exp((-h*As)/(m_*Cp)));//[degree Celcius] disp("degree Celcius",Te,"The exit temperature of air is") ln_delT=(Ti-Te)/(log((Td-Te)/(Td-Ti)));//[degree Celcius] Q=h*As*ln_delT;//[W] disp("respectively","W",round(Q),"and","degree Celcius",ln_delT,"The logrithmic mean temperature difference and the rate of heat loss from the air are")