clear; clc; //Example8.3[Flow of Oil in a Pipeline through a Lake] //Given:- Ts=0;//Temp of lake[degree Celcius] Ti=20;//Temp of oil[degree Celcius] d=0.3;//Diameter[m] l=200;//length of pipe[m] //At 20 degree Celcius rho=888.1;//[kg/m^3] nu=9.429*10^(-4);//Kinematic viscosity[m^2/s] k=0.145;//[W/m.degree Celcius] Cp=1880;//[J/kg.degree Celcius] Pr=10863;//Prandtl Number v_avg=2;//[m/s] //Solution(a) Re=v_avg*d/nu; disp(ceil(Re),"The Reynolds number is") Lt=0.05*Re*Pr*d;//[m] disp("m",Lt,"The thermal entry length is") Nu=3.66+((0.065*(d/l)*Re*Pr)/(1+(0.04*(((d/l)*Re*Pr)^(2/3))))); h=(k*Nu)/d;//[W/m^2.degree Celcius] As=%pi*d*l;//[m^2] m_=rho*%pi*((d/2)^2)*v_avg;//[kg/s] Te=Ts-((Ts-Ti)*exp((-h*As)/(m_*Cp)));//[degree Celcius] disp("degree Celcius",Te,"Exit temperature of oil is") //Solution(b):- ln_del_T=(Ti-Te)/(log((Ts-Te)/(Ts-Ti)));//[degree Celcius] disp("degree Celcius",ln_del_T,"The logrithmic mean temperature difference is") Q=h*As*ln_del_T;//[W] disp("W",Q,"The rate of heat loss from the oil are") //Solution(c) f=64/Re;//Friction factor is del_P=l*rho*(v_avg^2)/(2*d);//[N/m^2] disp(del_P); W_pump=m_*del_P/rho;//[kW] disp("pump just to overcome the friction in the pipe as the oil flows","kW",W_pump/1000,"We need a")