clear; clc; //Example7.8[Effect of insulation on Surface Temperature] //Given:- Ti=120;//Initial temp of hot water[degree Celcius] k_pipe=15;//W/m.degree Celcius ri=0.008,ro=0.01;//Inner and outer radii[m] t=0.002;//Thickness of pipe[m] To=25;//Ambient temperature[degree Celcius] Ts=40;//Maximum Temp of outer surface of insulation[degree Celcius] hi=70,ho=20;//Heat transfer coefficients inside and outside of the pipe[W/m^2.degree Celcius] k_insu=0.038;//[W/m.degree Celcius] L=1;//section of pipe[m] //Solution:- //Areas of surfaces exposed to convection A1=2*%pi*ri*L;//[m^2] //Individual Thermal Resistances R_conv1=1/(hi*A1);//[degree Celcius/W] R_pipe=(log(ro/ri))/(2*%pi*k_pipe*L);//[degree Celcius/W] //R_insu=(log(r3/ri))/(2*%pi*k_insu*L) //R_conv2=1/(ho*2*%pi*r3*L) //R_total=R_conv1+R_conv2+R_pipe+R_insu //Q=(Ti-To)/R_total; //Q=(Ts-To)/R_conv2; //Equating both Q we get function[r]=radius(r3) r(1)=1884*r3(1)*(0.284+0.0024+4.188*log((r3(1))/0.01)+(1/(125.6*r3(1))))-95; deff('[r]=radius(r3)',['radius_3=1884*r3(1)*(0.284+0.0024+4.188*log((r3(1))/0.01)+(1/(125.6*r3(1))))-95']) endfunction x0=[1] [xs,fxs,m]=fsolve(x0',radius) disp("m",xs,"The outer radius of the insulation is") t=xs-ro;//[m] disp("cm",100*t,"The minimum thickness of fibreglass insulation required is") ///Correct output will be displayed after executing the codes once and then re-executin them