clear; clc; //Example5.6[Solar Energy Storage in Trombe Walls] //Given:- hin=10;//[W/m^2] A=3*75;//[m^2] Tin=21;//[degree Celcius] k=0.69;//[W/m.degree Celcius] a=4.44*10^(-7);//diffusivity[m^2/s] kappa=0.77; delx=0.06;//The nodal spacing[m] L=0.3;//Length of wall[m] Tout=0.6,q_solar=360;//Ambient temperature in degree Celcius and Solar Radiation between 7am to 10 am //Solution:- M=(L/delx)+1; disp(M,"No of nodes are") //Stability Criterion del_t=(delx^2)/(3.74*a);//[seconds] disp("s",del_t,"The maximum allowable value of the time step is") //Therefore any step less than del_t can be used to solve this problem,for convinience let's choose delt=900;//[seconds] tao=a*delt/(delx^2); disp(tao,"The mesh Fourier number is") //Initially at 7am or t=0,the temperature of the wall is said to vary linearly between 21 degree Celcius at node 0 and -1 at node 5 //Temp between two neighbouring nodes is temp=(21-(-1))/5;//[degree Celcius] T0_0=Tin; T1_0=T0_0-temp; T2_0=T1_0-temp; T3_0=T2_0-temp; T4_0=T3_0-temp; T5_0=T4_0-temp; T0_1=((1-3.74*tao)*T0_0)+(tao*(2*T1_0+36.5)); T1_1=(tao*(T0_0+T2_0))+(T1_0*(1-(2*tao))); T2_1=(tao*(T1_0+T3_0))+(T2_0*(1-(2*tao))); T3_1=(tao*(T2_0+T4_0))+(T3_0*(1-(2*tao))); T4_1=(tao*(T3_0+T5_0))+(T4_0*(1-(2*tao))); T5_1=(T5_0*(1-(2.70*tao)))+(tao*((2*T4_0)+(0.70*Tout)+(0.134*q_solar))); disp("Nodal temperatures at 7:15am are") disp("degree Celcius",T0_1,"Node0:") disp("degree Celcius",T1_1,"Node1:") disp("degree Celcius",T2_1,"Node2:") disp("degree Celcius",T3_1,"Node3:") disp("degree Celcius",T4_1,"Node4:") disp("degree Celcius",T5_1,"Node5:") Q_wall=hin*A*delt*(((round(T0_1)+T0_0)/2)-Tin);//[J] disp("J",Q_wall,"The amount of heat transfer during the first time step or during the first 15 min period is") //Similarly using values from the table given we can find temperature at various nodes after required time interval