clear; clc; //Example4.8[Cooling of a Short Brass Cylinder] //Given:- Ti=120;//Initial Temperature[degree Celcius] T_ambient=25;//Temperature of atmospheric air[degree Celcius] h=60;//convetcion heat transfer coefficient[W/m^2.degree Celcius] r=0.05;//radius of cylinder[m] L=0.06;//thickness[m] a=3.39*(10^(-5));//Diffusivity of brass[m^2/s] k=110;//Thermal conductivity of brass[W/m.degree Celcius] t=900;//[seconds] //Solution (a):- disp("At the center of the plane wall") tau1=(a*t)/(L^2); Bi1=(h*L)/k; disp("respectively",Bi1,"and",tau1,"Fourier no and Biot no are") disp("At the center of the cylinder") tau2=(a*t)/(r^2); Bi2=(h*r)/k; disp("respectively",Bi2,"and",tau2,"Fourier no and Biot no are") theta_wall_c=0.8;//(T(0,t)-T_ambient)/(Ti-T_ambient) theta_cyl_c=0.5;//(T(0,t)-T_ambient)/(Ti-T_ambient) T_center=T_ambient+((theta_wall_c*theta_cyl_c)*(Ti-T_ambient));//[degree Celcius] disp("degree Celcius",round (T_center),"The temperature at the center of the short cylinder is") //Solution (b):- //The centre of the top surface of the cylinder is still at the center of the lonf cylinder(r=0),but at the outer surface of the plane wall(x=L). x=L;//[m] y=x/L; //For Bi=Bi1 and x=1 theta_wall_L=0.98*theta_wall_c;//(T(L,t)-T_ambient)/(Ti-T_ambient) T_surface=T_ambient+((theta_wall_L*theta_cyl_c)*(Ti-T_ambient));//[degree Celcius] disp("degree Celcius",round (T_surface),"The temperature at the top surface of the cylinder")