clear; clc; //Example4.5[Cooling of a long Stainless Steel Cylindrical Shaft] //Given:- Ti=600;//Temperature of cylinder just after taking it out of the oven[degree Celcius] h=80;//average heat transfer coefficient[W/m^2.degree Celcius] t=45*60;//Time for cooling[seconds] r=0.1;//Radius of cylinder[m] l=1;//Length of cylinder[m] //Properties of stainless steel cylinder k=14.9;//Thermal conductivity[W/m.degree Celcius] rho=7900;//Density[kg/m^3] Cp=477;//Specific Heat Capacity[J/kg.degree Celcius] a=3.95*(10^(-6));//Thermal diffusivity[m^2/s] T_f=200;//Ambient temperature[degree Celcius] //Solution:- Bi1=(h*r)/k; tau1=(a*t)/(r^2); //For biot no=Bi1 and fourier no=tau1,we have p=0.40;//p=(T(0)-T_f)/(Ti-T_f) T_0=T_f+(p*(Ti-T_f));//[degree Celcius] disp("degree Celcius",T_0,"The center temperature of the shaft after 45 minutes is") //Determining actual heat transfer m=rho*%pi*(r^2)*l;//[kg] Q_max=m*Cp*(Ti-T_f)*(1/1000);//[kJ] x=(Bi1^2)*tau1; //For biot no= Bi1 and (h^2)at/(k^2)=x, we have y=0.62;//y=Q/Q_max Q=y*Q_max;//[kJ] disp("kJ",round(Q),"The total heat transfer from the shaft during 45 minutes of cooling is")