clear; clc; //Example14.13[Heat Loss from Uncovered Hot Water Baths] //Given:- Ts=50+273;//Uniform temperature of water[K] T_surr=20+273;//Average temperature of surrounding surfaces[K] T_inf=25+273;//Ambient temperature[K] As=3.5*1;//Surface area of water bath[m^2] p=2*(3.5+1);//Perimeter of top surface of water bath[m] e=0.95;//Emissivity of liquid water phi=0.52;//Relative Humidity Rv=0.4615;//Universal Gas Constant[kPa.m^3/kg.K] Ra=0.287;//Universal Gas Constant[kPa.m^3/kg.K] g=9.81;//[m^2/s] //solution:- //(a) Q_rad=e*As*(5.67*10^(-8))*((Ts^4)-(T_surr^4)); disp("W",round(Q_rad),"The radiation heat loss from the water to the surrounding surface is") //(b) Tavg=(Ts+T_inf)/2;//Average temperature[degree Celcius] P=92;//Atmospheric pressure[kPa] //At average temperature Tavg and Pressure P,Properties of dry air:- k=0.02644;//[W/m.degree Celcius] Pr=0.7262;//Prandtl number, independent of pressure a=(2.312*10^(-5))/P;//Absorptivity[m^2/s] nu=(1.849*10^(-5));//Kinematic viscosity[m^2/s] //At T_surr properties of water are:- h_fg=2383;//[kJ/kg] Pvs=12.35;//[kPa] Psat=3.17;//Saturation Pressure of water at surface temp[kPa] //The air at surface is saturated therefore vapor pressure at surface is simple the saturation pressure of water at the surface temperature Pv_inf=phi*Psat;//[kPa] //At the surface rho_vs=Pvs/(Rv*Ts); disp("kg/m^3",rho_vs,"Density of water vapor at the surface is") rho_as=(P-Pvs)/(Ra*Ts); disp("kg/m^3",rho_as,"Density of air at the surface is") rho_s=rho_vs+rho_as; disp("kg/m^3",rho_s,"Density of mixture at the surface is") //Away from the surface rho_vinf=Pv_inf/(Rv*T_inf); disp("kg/m^3",rho_vinf,"Density of vapor away from the surface is") rho_ainf=(P-Pv_inf)/(Ra*T_inf); disp("kg/m^3",rho_ainf,"Density of air away from the surface is") rho_inf=rho_ainf+rho_vinf; disp("kg/m^3",rho_inf,"The density of mixture away from the surface is") Lc=As/p; disp("m",Lc,"The characteristic length is") Gr=g*(rho_inf-rho_s)*(Lc^3)/(((rho_inf+rho_s)/2)*(nu^2)); disp(Gr,"The Grashof number is") Nu=0.15*((Gr*Pr)^(1/3)); disp(Nu,"The Nusselt number is") h_conv=Nu*k/Lc; disp("W/m^2.degree Celcius",h_conv,"The convection heat transfer coefficient is") Q_conv=h_conv*As*(Ts-T_inf); disp("W",ceil(Q_conv),"The natural convection heat transfer rate is") //(c) D_AB=(1.87*10^(-10))*(Tavg^2.072)/(P/101.325); disp("m^2/s",D_AB,"The mass diffusivity of water vapor in air at the average temperature is") Sc=nu/D_AB; disp(Sc,"The Schmidt Number is") Sh=0.15*((Gr*Sc)^(1/3)); disp(Sh,"The Sherwood Number is") h_mass=Sh*D_AB/Lc; disp("m/s",h_mass,"The mass transfer coefficient is") mv=h_mass*As*(rho_vs-rho_vinf); disp("kg/s",mv,"The evaporation rate is") Q_evap=mv*h_fg; disp("kW",Q_evap,"The rate of heat transfer by evaporation is") Q_total=Q_rad+Q_conv+1000*Q_evap; disp("W",Q_total,"The total rate of heat transfer from the water to the surrounding air and surfaces is")