clear; clc; //Example14.12[Evaporative Cooling of a Canned Drink] //Given:- //Water is species A and air is species B M_A=18,M_B=29;;//Molar Masses of water and air[kg/kmol] D_AB=2.5*10^(-5);//Diffusivity of water vapor in air[m^2/s] T_inf=30;//Ambient Temperature[degree Celcius] T_avg=(20+T_inf)/2;//Average temperature P=101.325;//Atmospheric Pressure[kPa] //Properties of A at 20 degree Celcius h_fg=2454;//[kJ/kg] Pv1=2.34;//Saturation vapor pressure[kPa] Pv2=4.25;//Vapor Pressure at 30 degree Celcius[kPa] //Properties of air at average temperature and 1 atm Cp=1.007;//[kJ/kg] a=2.141*10^(-5);//[m^2/s] phi=0.4;//Relative Humidity //Solution:- Le=a/D_AB; disp(Le,"The Lewis Number is") Pv_inf=phi*Pv2;//[kPa] disp("kPa",Pv_inf,"The vapor pressure of air away from the surface is") Ts=T_inf-(h_fg*M_A*(Pv1-Pv_inf)/(Cp*(Le^(2/3))*M_B*P)); disp("degree Celcius",Ts,"The temperature of the drink can be lowered to")