clear; clc; //Example14.11[Analogy between Heat and Mass Transfer] //Given:- //Napthalene is species A and air is species B M_A=128.2;//Molar Mass of A[kg/kmol] M_air=29;//Molar mass of B[kg/kmol] P=101325;//Pressure of Air[Pa] T=298;//Temperature[K] D_AB=0.61*10^(-5);//[m^2/s] v=2;//Stream velocity[m/s] rho=1.184;//Density of air[kg/m^3] Cp=1007;//Specific Heat[J/kg.K] a=2.141*10^(-5);//Absorptivity[m^2/s] w_inf=0;//Mass fraction of napthalene at free stream conditions P_As=11;//Vapor Pressure of Napthalene at surface[Pa] mA=12*10^(-3);//Mass of napthalene sublimated[kg] delta_t=15*60;//time of sublimation[s] As=0.3;//surface area of the body[m^2] //Solution:- w_As=(P_As/P)*(M_A/M_air); disp(w_As,"Mass fraction at the surface is") m_evap=mA/delta_t;//[kg/s] disp("kg/s",m_evap,"The rate of evaporation of napthalene is") h_mass=m_evap/(rho*As*(w_As-w_inf)); disp("m/s",h_mass,"The mass convection coefficient is") //Using analogy between heat and mass transfer h_heat=rho*Cp*h_mass*((a/D_AB)^(2/3));//[W/m^2.degree Celcius] disp("W/m^2.degree Celcius",round(h_heat),"The average heat transfer coefficient is")