clear; clc; //Example11.5[Heating of Glycerine in a Multipass Heat Exchanger] //Given:- //A 2,4 shell and tube heat exchanger D=0.02;//Diameter[m] L=60;//Length of tube[m] Th_in=80,Th_out=40,Tc_in=20,Tc_out=50;//Inlet and Outlet temperatures water and glycerine[degree Celcius] hi=160,ho=25;//Convective Heat transfer coefficients on both side of tube[W/m^2.degree Celcius] Rf=0.0006;//Fouling Resistance[m^2.degree Celcius/W] //Solution:- As=%pi*D*L;//[m^2] del_T1=Th_in-Tc_out;//[degree Celcius] del_T2=Th_out-Tc_in;//[degree Celcius] del_T_lm=(del_T1-del_T2)/log(del_T1/del_T2);//[degree Celcius] disp("degree Celcius",del_T_lm,"The log mean temperature difference for the counter flow arrangement is") F=0.91;//Correction Factor //(a) Ua=1/((1/hi)+(1/ho));//[W/m^2.degree Celcius] disp("W/m^2.degree Celcius",Ua,"In case of no fouling, the over all heat transfer coefficient is") Qa=Ua*As*F*del_T_lm;//[W] disp("W",ceil(Qa),"And the rate of heat transfer is") //(b) Ub=1/((1/hi)+(1/ho)+(Rf));//[W/m^2.degree Celcius disp("W/m^2.degree Celcius",Ub,"When there is fouling on one of the surfaces, the overall heat transfer coefficient is") Qb=Ub*As*F*del_T_lm;//[W] disp("W",round(Qb),"And the rate of heat transfer is")