clear; clc; //Example11.1[Overall Heat Transfer Coefficient of a Heat Exchanger] D_in=0.02;//Diameter of inner tubes[m] Di_out=0.03;//Inner Diameter of Outer tubes[m] mw=0.5;//Mass Flow Rate of water[kg/s] mo=0.8;//Mass Flow rate of oil[kg/s] Tw=45;//Average Temp of water[degree Celcius] To=80;//Average Temp of oil [degree Celcius] //Properties of water at Tw rho_w=990.1;//[kg/m^3] Pr_w=3.91;//Prandtl Number k_w=0.637;//[W/m.degree Celcius] nu_w=0.602*10^(-6);//[m^2/s] //Properties of oil at To rho_o=852;//[kg/m^3] Pr_o=499.3;//Prandtl Number k_o=0.138;//[W/m.degree Celcius] nu_o=3.794*10^(-5);//[m^2/s] //Solution:- Vw=mw/(rho_w*(%pi*(D_in^2)/4));//[m/s] disp("m/s",Vw,"The average velocity of water in the tube is") Re_w=Vw*D_in/nu_w; disp(Re_w,"The Reynolds number for flow of water in the tube is") Nu_w=0.023*(Re_w^(0.8))*(Pr_w^(0.4)); disp(Nu_w,"The nusselt no for turbulent water flow") hi=k_w*Nu_w/D_in;//[W/m^2.degree Celcius] //For oil flow Dh=Di_out-D_in;//Hydraulic Diameter for the annular space[m] Vo=mo/(rho_o*(%pi*((Di_out^2)-(D_in^2))/4));//[m/s] disp("m/s",Vo,"The average velocity for flow of oil is") Re_o=Vo*Dh/nu_o; disp(Re_o,"The Reynolds number for flow of oil is") Nu_o=5.45;//Nusselt number for flow of oil usign the table 11.3 and interpolating for value corresponding to Di_out/D_in ho=Nu_o*k_o/Dh;//[W/m^2.degree Celcius] U=(1/((1/hi)+(1/ho)));//[W/m^2.degree Celcius] disp("W/m^2.degree Celcius",U,"The overall heat transfer Coefficient for the given heat exchanger is")