clear; clc; //Example10.3[Film Boiling of Water on a Heating Element] //Given:- D=0.005;//[m] e=0.05;//Emissivity Ts=350;//Surface temperature[degree Celcius] Tsat=100;//[degree Celcius] Tf=(Ts+Tsat)/2;//[degree Celcius] g=9.81;//[m/s^2] //Properties of water at Tsat rho_l=957.9;//[kg/m^3] h_fg=2257*10^3;//[J/kg] //Properties of vapor at film temp rho_v=0.444;//[kg/m^3] Cp_v=1951;//[J/kg.degree Celcius] mu_v=1.75*10^(-5);//[kg/m.s] k_v=0.0388;//[W/m.degree Celcius] //Solution:- q_film=0.62*(((g*(k_v^3)*rho_v*(rho_l-rho_v)*(h_fg+(0.4*Cp_v*(Ts-Tsat))))/(mu_v*D*(Ts-Tsat)))^(1/4))*(Ts-Tsat);//[W/m^2] disp("W/m^2)",q_film,"The film boiling heat flux is") q_rad=e*(5.67*10^(-8))*(((Ts+273)^4)-((Tsat+273)^4));//[W/m^2] disp("W/m^2",q_rad,"The radiation heat flux is") q_total=q_film+(3/4)*q_rad;//[W/m^2] disp("W/m^2",q_total,"The total heat flux is") Q_total=(%pi*D*1)*q_total;//[W] disp("W",Q_total,"The rate of heat transfer from the heating element to the water is")