//(9.4) Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with a volumetric flow rate of 5 m3/s. The compressor pressure ratio is 10. The turbine inlet temperature is 1400 K. Determine (a) the thermal efficiency of the cycle, (b) the back work ratio, (c) the net power developed, in kW. //solution //variable initialization T1 = 300 //in kelvin AV = 5 //volumetric flow rate in m^3/s p1 = 100 //in kpa pr = 10 //compressor pressure ratio T3 = 1400 //turbine inlet temperature in kelvin //analysis //At state 1, the temperature is 300 K. From Table A-22, h1 = 300.19 //in kj/kg pr1 = 1.386 pr2 = pr*pr1 //interpolating in Table A-22, h2 = 579.9 //in kj/kg //from Table A-22 h3 = 1515.4 //in kj/kg pr3 = 450.5 pr4 = pr3*1/pr //Interpolating in Table A-22, we get h4 = 808.5 //in kj/kg //part(a) eta = ((h3-h4)-(h2-h1))/(h3-h2) //thermal efficiency printf('the thermal efficiency is: %f',eta) //part(b) bwr = (h2-h1)/(h3-h4) //back work ratio printf('\nthe back work ratio is: %f',bwr) //part(c) R = 8.314 //universal gas constant, in SI units M = 28.97 //molar mass of air in grams mdot = AV*p1/((R/M)*T1) //mass flow rate in kg/s Wcycledot = mdot*((h3-h4)-(h2-h1)) //The net power developed printf('\n the net power developed, in kW is: %f',Wcycledot)