//(14.1) Evaluate the equilibrium constant, expressed as log10K, for the reaction at (a) 298 K and (b) 2000 K. Compare with the value obtained from Table A-27. //solution //The reaction is CO + .5O2 ----> CO2 //part(a) T = 298 //in kelvin Rbar = 8.314 //universal gas constant in SI units //from table A-25 hfbarCO2 = -393520 //in kj/kmol hfbarCO = -110530 //in kj/kmol hfbarO2 = 0 //in kj/kmol deltahbarCO2 = 0 //in kj/kmol deltahbarCO = 0 //in kj/kmol deltahbarO2 = 0 //in kj/kmol sbarCO2 = 213.69 //in kj/kmol.K sbarCO = 197.54 //in kj/kmol.K sbarO2 = 205.03 //in kj/kmol.K deltaG = [hfbarCO2-hfbarCO-.5*hfbarO2] + [deltahbarCO2-deltahbarCO-.5*deltahbarO2] - T*(sbarCO2-sbarCO-.5*sbarO2) lnK = -deltaG/(Rbar*T) logK = (1/log(10))*lnK //from table A-27 logKtable = 45.066 printf('part(a) the value of equilibrium constant expressed as log10K is: %f',logK) printf('\nthe value of equilibrium constant expressed as log10K from table A-27 is: %f',logKtable) //part(b) T = 2000 //in kelvin //from table A-23 hfbarCO2 = -393520 //in kj/kmol hfbarCO = -110530 //in kj/kmol hfbarO2 = 0 //in kj/kmol deltahbarCO2 = 100804-9364 //in kj/kmol deltahbarCO = 65408 - 8669 //in kj/kmol deltahbarO2 = 67881 - 8682 //in kj/kmol sbarCO2 = 309.210 //in kj/kmol.K sbarCO = 258.6 //in kj/kmol.K sbarO2 = 268.655 //in kj/kmol.K deltaG = [hfbarCO2-hfbarCO-.5*hfbarO2] + [deltahbarCO2-deltahbarCO-.5*deltahbarO2] - T*(sbarCO2-sbarCO-.5*sbarO2) lnK = -deltaG/(Rbar*T) logK = (1/log(10))*lnK //from table A-27 logKtable = 2.884 printf('\n\npart(b) the value of equilibrium constant expressed as log10K is: %f',logK) printf('\nthe value of equilibrium constant expressed as log10K from table A-27 is: %f',logKtable)