//(12.4) A gas mixture consisting of CO2 and O2 with mole fractions 0.8 and 0.2, respectively, expands isentropically and at steady state through a nozzle from 700 K, 5 bars, 3 m/s to an exit pressure of 1 bar. Determine (a) the temperature at the nozzle exit, in K, (b) the entropy changes of the CO2 and O2 from inlet to exit, in KJ/Kmol.K (c) the exit velocity, in m/s. //solution //variable initialization y1 = .8 //mole fraction of CO2 y2 = .2 //mole fraction of O2 T1 = 700 //in kelvin p1 = 5 //in bars V1 = 3 //in m/s p2 = 1 //in bars //part(a) //from table A-23 sO2barT1 = 231.358 sCO2barT1 = 250.663 RHS = y2*sO2barT1 + y1*sCO2barT1 + 8.314*log(p2/p1) //using table A-23 LHSat510K = y2*221.206 + y1*235.7 LHSat520K = y2*221.812 + y1*236.575 //using linear interpolation, T2 = 510 +[(520-510)/(LHSat520K-LHSat510K)]*(RHS-LHSat510K) printf('the temperature at the nozzle exit in K is: %f',T2) //part(b) //from table A-23 sbarO2T2 = 221.667 //in kj/kmol.K sbarO2T1 = 231.358 //in kj/kmol.K sbarCO2T2 = 236.365 //in kj/kmol.K sbarCO2T1 = 250.663 //in kj/kmol.K deltasbarO2 = sbarO2T2-sbarO2T1-8.314*log(p2/p1) //in kj/kmol.K deltasbarCO2 = sbarCO2T2-sbarCO2T1-8.314*log(p2/p1) //in kj/kmol.K printf('\n\nthe entropy changes of the CO2 from inlet to exit, in KJ/Kmol.K is: %f',deltasbarCO2) printf('\nthe entropy change of the O2 from inlet to the exit in kj/kmol.k is: %f',deltasbarO2) //part(c) //from table A-23, the molar specific enthalpies of O2 and CO2 are h1barO2 = 21184 h2barO2 = 15320 h1barCO2 = 27125 h2barCO2 = 18468 M = y1*44 + y2*32 //apparent molecular weight of the mixture in kg/kmol deltah = (1/M)*[y2*(h1barO2-h2barO2) + y1*(h1barCO2-h2barCO2)] V2 = sqrt(V1^2+ 2*deltah*10^3) printf('\n\nthe exit velocity in m/s is: %f',V2)