clc m=1; //kg p1=5; //bar V1=0.02; //m^3 V2=0.08; //m^3 p2=1.5; //bar function p=f(V) p=a+b*V; endfunction // 5=a+0.02*b // 1.5=a+0.08*b // Solving above two equations A=[1,0.02;1,0.08]; B=[5;1.5]; X=inv(A)*B; a=X(1,1); b=X(2,1); disp("(i) p-V diagram") V=0.02:0.001:0.08; p=a+b*V; plot(V,p,'b') V=[0.0667 0.08]; p=[1.5 1.5]; plot(V,p,'g') V=0.02:0.001:0.0667; function p=fa(V) p=0.1/V; endfunction plot(V,fa,'r') V=[0.0667 0.0667]; p=[1.5 0]; plot(V,p,'--') xtitle("p-V diagram", "V(m^3)", "p(bar)"); legend("p=a+b*V","p=constant","pv=constant") disp("(ii) Work done and heat transfer") W_12=integrate('(a+b*V)*10^2','V',V1,V2); disp("Work done by the system =") disp(W_12) disp("kJ") p3=p2; V3=p1*V1/p3; W_23=p2*(V3-V2)*10^2; //kJ W_31=p3*V3*log(V1/V3)*10^2; //kJ disp("Work done on the system =") disp(W_31) disp("kJ") W_net=W_12+W_23+W_31; disp("Net work done =") disp(W_net) disp("kJ") Q_net=W_net; disp("Heat transferred during the complete cycle =") disp(Q_net) disp("kJ")