clc h_l=355.988; //kJ/kg s_l=0.5397; //kJ/kg K s_f=0.0808; //kJ/kg K s_g=0.6925; //kJ/kg K h_f=29.98; //kJ/kg h_g=329.85; //kJ/kg p1=4; //bar p2=0.04; //bar v_f2=76.5*10^(-6); //m^3/kg h1=2789.9; //kJ/kg s1=6.4406; //kJ/kg h_f=121.5; //kJ/kg h_fg=2432.9; //kJ/kg s_f=0.432; //kJ/kg K s_fg2=8.052; //kJ/kg K p4=15; //bar p3=0.04; //bar v_f=0.0001; //kJ/kg K h_f4=123; //kJ/kg h_m=254.88; //kJ/kg h_fn=29.98; //kJ/kg h_fk=29.988; //kJ/kg disp("(i) Overall thermal efficiency ") m=(h1-h_f4)/(h_m-h_fn); //The amount of mercury circulating for 1kg of steam in the bottom cycle Q1=m*(h_l-h_fk); //total x2=(s1-s_f)/(s_fg2); h2=h_f+x2*h_fg; W_T=m*(h_l-h_m)+(h1-h2); //total n_overall=W_T/Q1; //W_P may be neglected disp("n_overall =") disp(n_overall) disp("(ii) Flow through mercury turbine=") A=48000; //kg/h m_Hg=m*A; disp(m_Hg) disp("kg/h") disp("(iii) Useful work in binary vapour cycle=") W_total=A*W_T/3600; disp(W_total) disp("kW") disp("(iv) Overall efficiency under new conditions ") n_Hg=0.84; n_steam=0.88; W_Hg=n_Hg*101.1; h_m1=h_l-W_Hg; m1=(h1-h_f4)/(h_m1-h_fn); h_g=3037.6; //kJ/kg s_g=6.918; //kJ/kg s_f2=0.423; //kJ/kg K s_fg2=8.052; //kJ/kg K Q1=m1*(h_l - h_fk) + (h_g-h1); x2=(s_g-s_f2)/s_fg2; h2=h_f+x2*h_fg; W_steam=n_steam*(h_g-h2); W_total=m1*W_Hg + W_steam; n_overall=W_total/Q1; disp("n_overall") disp(n_overall)