clc //At 30bar, 400 0C h1=3230.9; //kJ/kg s1=6.921; //kJ/kg s2=s1; s3=s1; //At 5 bar s_f1=1.8604; s_g1=6.8192; //kJ/kg K h_f1=640.1; //kJ/kg t2=172 //0C h2=2796; //kJ/kg //At 0.1 bar s_f3=0.649; //kJ/kg K s_fg3=7.501; //kJ/kg K h_f3=191.8; //kJ/kg h_fg3=2392.8; //kJ/kg x3=(s2-s_f3)/s_fg3; h3=h_f3+x3*h_fg3; h_f4=191.8; //kJ/kg h_f5=h_f4; h_f6=640.1; //kJ/kg h_f7=h_f6; s7=1.8604; //kJ/kg K s4=0.649; //kJ/kg K m=(h_f6-h_f5)/(h2-h_f5); W_T=(h1-h2) + (1-m)*(h2-h3); Q1=h1-h_f6; disp("(i) Efficiency of cycle =") n_cycle=W_T/Q1; disp(n_cycle) SR=3600/W_T; //Steam rate disp("Steam rate =") disp(SR) disp("kg/kWh") T_m1=(h1-h_f7)/(s1-s7); T_m1r=(h1-h_f4)/(s1-s4); //Without regeneration dT_m1=T_m1-T_m1r; disp("Increase in T_m1 due to regeneration=") disp(dT_m1) disp("0C") W_Tr=h1-h3; //Without regeneration SR1=3600/W_Tr; //Steam rate without regeneration dSR=SR-SR1; disp("Increase in steam rate due to regeneration=") disp(dSR) disp("kg/kWh") n_cycle1=(h1-h3)/(h1-h_f4); //without regeneration dn_cycle=n_cycle-n_cycle1; disp("Increase in cycle efficiency due to regeneration") disp(dn_cycle*100) disp("%")