clc; clear; printf("\n Example 5.3"); p_s=1.25e-3; // Particle size of sand printf("\n Given:\n Particle size of sand = %.2f mm",p_s*1e3); rho_sand=2600; //Density of sand printf("\n Density of sand = %d kg/m^3",rho_sand); flow_sand=1; //flow rate of sand in air printf("\n flow rate of sand in air = %d kg/s",flow_sand); l=200; //length of pipe printf("\n length of pipe = %d m",l); // Assuming a solids:gas mass ratio of 5, then: flow_air=flow_sand/5; vol_flow_air=1*flow_air; printf("\n\n Calculations:\n Volumetric flow rate of air = %.2f m^3/s",vol_flow_air); //In order to avoid an excessive pressure drop, an air velocity of 30 m/s is acceptable d=100e-3; // taking nearest standard size of pipe // For sand of particle size 1.25 mm and density 2600 kg/m3, the free-falling velocity is given in Table 5.3 as: Uo=4.7; // In equation 5.37: area=%pi*d^2/4; printf("\n The cross-sectional area of a 100 mm ID. pipe = %.5f m^2",area); Ug=flow_air/area; Us=Ug-(Uo/(0.468+(7.25*(Uo/rho_sand)^0.5))); printf("\n Air velocity = %.1f m/s",Ug); printf("\n solids velocity = %.1f m/s",Us); //Taking Meu_air=1.7e-5; // viscosity of air rho_air=1; // Density of air Re=(d*Ug*rho_air/Meu_air); printf("\n Reynolds no. of air alone = %d",Re); phi=0.004; //Assuming isothermal conditions and incompressible flow, then, in equation 3.18: DP_air=(4*phi*l/d)*rho_air*Ug^2/2; printf("\n Pressure drop due to air = %.1f kN/m^2",DP_air*1e-3); //and in equation 5.38: DP_x=2805*DP_air/(Uo*Us^2); printf("\n Pressure drop due to sand particles = %.1f kN/m^2",DP_x*1e-3); DP=DP_air+DP_x; printf("\n The total pressure drop = %.1f kN/m^2",DP*1e-3);