clc; printf("Example 3.10\n"); k=10; n=0.2; //Using the power-law model (equation 3.121): printf("\n Given:\n Consistency coefficient k = %d N.s^n/m^-2",k); printf("\n Flow behaviour index = %.1f",n); Ucl=1; // centre line velocity printf("\n Centre line velocity = %d m/s",Ucl); l=200; // length of pipe printf("\n Length of pipe = %d m",l) r=.02; // radius of pipe printf("\n Radius of pipe = %.2f m",r); dux_dy_1=10; dux_dy_2=50; Ry_1=k*dux_dy_1^0.2; Ry_2=k*dux_dy_2^0.2; //Using the Bingham-plastic model (equation 3.125): A=[1 10;1 50] B=[15.85;21.87] C=inv(A)*B; Ry=C(1); Meu_p=C(2); printf("\n\n Plastic viscosity (Meu_p) = %.3f N s/m^2",C(2)); printf("\n Yeild stress (Ry) = %.2f N s/m^2",C(1)); // Using Equation 3.131 DP=2*k*l*Ucl^n*((n+1)/n)^n*r^(-n-1); printf("\n Pressure drop (Bingham plastic model)= %.0f kN/m^2",DP/1e3); // For a Bingham-plastic fluid: // The centre line velocity is given by equation 3.145: X=(l*2*Ry)/(r*DP); Up=(DP*r^2*(2-4*X+2*X^2))/(8*Meu_p*l); printf("\n centre line velocity (Bingham plastic model) = %.2f m/s",Up);