clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 9.5 Page 592 \n'); //Example 9.5 // Heat Loss from pipe per unit of length // Heat Loss if air is filled with glass-fiber blanket insulation //Operating Conditions To = 35+273 ;//[K] Shield Temperature Ti = 120+273 ;//[K] Tube Temperature Di = .1 ;//[m] Diameter inner Do = .12 ;//[m] Diameter outer L = .01 ;//[m] air gap insulation //Table A.4 Air Properties T = 350 K k = 30*10^-3 ;//[W/m.K] Conductivity uv = 20.92*10^-6 ;//[m^2/s] Kinematic Viscosity al = 29.9*10^-6 ;//[m^2/s] alpha be = 2.85*10^-3 ;//[K^-1] Tf^-1 Pr = .7 ;// Prandtl number g = 9.81 ;//[m^2/s] gravitational constt //Table A.3 Insulation glass fiber T=300K kins = .038 ;//[W/m.K] Conductivity Lc = 2*[2.303*log10(Do/Di)]^(4/3)/((Di/2)^-(3/5)+(Do/2)^-(3/5))^(5/3); Ra = g*be*(Ti-To)/al*Lc^3/uv; keff = .386*k*(Pr/(.861+Pr))^.25*Ra^.25; q = 2*%pi*keff*(Ti-To)/(2.303*log10(Do/Di)); //From equatiom 9.58 and 3.27 qin = q*kins/keff; printf("\n Heat Loss from pipe per unit of length is %i W/m \n Heat Loss if air is filled with glass-fiber blanket insulation %i W/m",q,qin); //END