clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 8.2 Page 499 \n'); //Example 8.2 // Length of tube needed to achieve the desired outlet temperature //Local convection coefficient at the outlet //Operating Conditions m = .1; //[kg/s] mass flow rate of water Ti = 20+273; //[K] Inlet temp To = 60+273; //[K] Outlet temperature Di = .02; //[m] Inner Diameter Do = .04; //[m] Outer Diameter q = 10^6; //[w/m^3] Heat generation Rate Tsi = 70+273; //[K] Inner Surface Temp //Table A.4 Air Properties T = 313 K cp = 4179; //[J/kg.K] specific heat L = 4*m*cp*(To-Ti)/(%pi*(Do^2-Di^2)*q); //From Newtons Law of cooling, Equation 8.27, local heat convection coefficient is h = q*(Do^2-Di^2)/(Di*4*(Tsi-To)); printf("\n Length of tube needed to achieve the desired outlet temperature = %.1f m \n Local convection coefficient at the outlet = %i W/m^2.K",L,h); //END