clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 7.6 Page 434 \n'); //Example 7.6 // Time required to cool from Ti = 75 degC to 35 degC //Operating Conditions v = 10; //[m/s] Air velocity Tsurr = 23+273; //[K] Surrounding Air Temperature D = .01; //[m] Diameter of sphere Ti = 75+273; //[K] Initial temp Tt = 35+273; //[K] Temperature after time t p = 1; //[atm] //Table A.1 Copper at T = 328K rho = 8933; //[kg/m^3] Density k = 399; //[W/m.K] Conductivity cp = 388; //[J/kg.K] specific //Table A.4 Air Properties T = 296 K u = 182.6*10^-7; //[N.s/m^2] Viscosity uv = 15.53*10^-6; //[m^2/s] Kinematic Viscosity k = 25.1*10^-3; //[W/m.K] Thermal conductivity Pr = .708; //Prandtl Number //Table A.4 Air Properties T = 328 K u2 = 197.8*10^-7; //[N.s/m^2] Viscosity Re = v*D/uv; //Reynolds number //Using Equation 7.56 Nu = 2+(0.4*Re^.5 + 0.06*Re^.668)*Pr^.4*(u/u2)^.25; h = Nu*k/D; //From equation 5.4 and 5.5 t = rho*cp*D*2.30*log10((Ti-Tsurr)/(Tt-Tsurr))/(6*h); printf("\nTime required for cooling is %.1f sec",t); //END