clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 7.2 Page 417 \n'); //Example 7.2 // Maximum Heater Power Requirement //Operating Conditions v = 60; //[m/s] Air velocity Tsurr = 25+273; //[K] Surrounding Air Temperature w = 1; //[m] Width of plate L = .05; //[m] Length of stripper Ts = 230+273; //[K] Surface Temp //Table A.4 Air Properties at T = 400K uv = 26.41*10^-6; //[m^2/s] Kinematic Viscosity k = .0338; //[W/m.K] Thermal COnductivity Pr = .690; //Prandtl number Re = v*L/uv; //Reynolds number Rexc = 5*10^5; //Transition Reynolds Number xc = uv*Rexc/v; //Transition Length printf("\n Reynolds Number based on length L = .05m is %i. \n And the transition occur at xc = %.2f m ie fifth plate",Re,xc); //For first heater //Correlation 7.30 Nu1 = .664*Re^.5*Pr^.3334; //Nusselt Number h1 = Nu1*k/L; // Average Convection Coefficient q1 = h1*(L*w)*(Ts-Tsurr); // Convective Heat exchange //For first four heaters Re4 = 4*Re; L4 = 4*L; Nu4 = .664*Re4^.5*Pr^.3334; //Nusselt Number h4 = Nu4*k/L4; // Average Convection Coefficient //For Fifth heater from Eqn 7.38 Re5 = 5*Re; A = 871; L5 = 5*L; Nu5 = (.037*Re5^.8-A)*Pr^.3334; //Nusselt Number h5 = Nu5*k/L5; // Average Convection Coefficient q5 = (h5*L5-h4*L4)*w*(Ts-Tsurr); //For Sixth heater from Eqn 7.38 Re6 = 6*Re; L6 = 6*L; Nu6 = (.037*Re6^.8-A)*Pr^.3334 ; //Nusselt Number h6 = Nu6*k/L6 ; // Average Convection Coefficient q6 = (h6*L6-h5*L5)*w*(Ts-Tsurr); printf("\n\n Power requirement are \n qconv1 = %i W qconv5 = %i W qconv6 = %i W", q1,q5,q6); printf("\n Hence %i > %i > %i and the sixth plate has largest power requirement", q6,q1,q5); //END