clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 6.7 Page 383 \n'); //Example 6.7 // Steady State Temperature of Beverage //Operating Conditions Tsurr = 40+273; //[K] Surrounding Air Temperature //Volatile Wetting Agent A hfg = 100; //[kJ/kg] Ma = 200; //[kg/kmol] Molecular mass pasat = 5000; //[N/m^2] Saturate pressure Dab = .2*10^-4; //[m^2/s] Diffusion coefficient //Table A.4 Air Properties at T = 300K p = 1.16; //[kg/m^3] Density cp = 1.007; //[kJ/kg.K] Specific Heat alpha = 22.5*10^-6; //[m^2/s] R = 8.314; //[kJ/kmol] Universal Gas Constt //Applying Eqn 6.65 and setting pasurr = 0 // Ts^2 - Tsurr*Ts + B = 0 , where the coefficient B is B = Ma*hfg*pasat*10^-3/[R*p*cp*(alpha/Dab)^(2/3)]; Ts = [Tsurr + sqrt(Tsurr^2 - 4*B)]/2; printf("\n Steady State Surface Temperature of Beverage = %.1f degC", Ts-273); //END