clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 6.4 Page 362 \n'); //Example 6.4 // Convection Mass Transfer coefficient //Operating Conditions v = 1; //[m/s] Velocity of water L = 0.6; //[m] Plate length Tw1 = 300; //[K] Tw2 = 350; //[K] //Coefficients [W/m^1.5 . K] Clam1 = 395; Cturb1 = 2330; Clam2 = 477; Cturb2 = 3600; //Water Properties at T = 300K p1 = 997; //[kg/m^3] Density u1 = 855*10^-6; //[N.s/m^2] Viscosity //Water Properties at T = 350K p2 = 974; //[kg/m^3] Density u2 = 365*10^-6; //[N.s/m^2] Viscosity Rec = 5*10^5; //Transititon Reynolds Number xc1 = Rec*u1/(p1*v); //[m]Transition length at 300K xc2 = Rec*u2/(p2*v); //[m]Transition length at 350K //Integrating eqn 6.14 //At 300 K h1 = [Clam1*xc1^.5/.5 + Cturb1*(L^.8-xc1^.8)/.8]/L; //At 350 K h2 = [Clam2*xc2^.5/.5 + Cturb2*(L^.8-xc2^.8)/.8]/L; printf("\n\n Average Convection Coefficient over the entire plate for the two temperatures at 300K = %.2f W/m^2.K and at 350K = %.2f W/m^2.K", h1,h2); //END