clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 5.9 Page 305 \n'); //Example 5.9 // Temperature distribution 1.5s after a change in operating power //Operating Conditions L = .01; //[m] Metre Tsurr = 250+273; //[K] Temperature h = 1100; //[W/m^2.K] Heat Convective Coefficient q1 = 10^7; //[W/m^3] Volumetric Rate q2 = 2*10^7; //[W/m^3] Volumetric Rate k = 30; //[W/m.K] Conductivity a = 5*10^-6; //[m^2/s] delx = L/5; //Space increment for numerical solution Bi = h*delx/k; //Biot Number //By using stability criterion for Fourier Number Fo = (2*(1+Bi))^-1; //By definition t = Fo*delx^2/a; printf('\n As per stability criterion delt = %.3f s, hence setting stability limit as .3 s.',t) // Using Finite time increment of .3s delt = 1*.3; Fo1 = a*delt/delx^2; x = [0 delx delx*2 delx*3 delx*4 delx*5]; //At p=0 Using equation 3.46 for i = 1: length(x) T(1,i) = q1*L^2/(2*k)*(1-x(i)^2/L^2)+Tsurr + q1*L/h -273 ; end //System of Equation in Finite Difference method for j = 2:6 T(j,1)=Fo1*(2*T(j-1,2)+q2*delx^2/k) + (1 -2*Fo1)*T(j-1,1); T(j,2)=Fo1*(T(j-1,1)+T(j-1,3)+q2*delx^2/k) + (1 -2*Fo1)*T(j-1,2); T(j,3)=Fo1*(T(j-1,2)+T(j-1,4)+q2*delx^2/k) + (1 -2*Fo1)*T(j-1,3); T(j,4)=Fo1*(T(j-1,3)+T(j-1,5)+q2*delx^2/k) + (1 -2*Fo1)*T(j-1,4); T(j,5)=Fo1*(T(j-1,4)+T(j-1,6)+q2*delx^2/k) + (1 -2*Fo1)*T(j-1,5); T(j,6)=2*Fo1*(T(j-1,5)+Bi*(Tsurr-273)+q2*delx^2/(2*k)) + (1 -2*Fo1-2*Bi*Fo1)*T(j-1,6); end //At p=infinity Using equation 3.46 x = [0 delx delx*2 delx*3 delx*4 delx*5]; for i = 1:length(x) T(7,i) = q2*L^2/(2*k)*(1-x(i)^2/L^2)+Tsurr+q2*L/h-273; end for j= 1:6 Tans(j,:) = [j-1 delt*(j-1) T(j,:)]; end printf("\n\n Tabulated Nodal Temperatures \n\n p t(s) T0 T1 T2 T3 T4 T5\n"); format('v',6); disp(Tans); printf(" inf inf %.1f %.1f %.1f %.1f %.1f %.1f",T(7,1),T(7,2),T(7,3),T(7,4),T(7,5),T(7,6)); //END