clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 5.8 Page 300 \n'); //Example 5.8 // Thermal Conductivity of Nanostructured material //Operating Conditions k = 1.11 ; //[W/m.K] Thermal Conductivity rho = 3100; //[kg/m^3] Density c = 820 ; //[J/kg.K] Specific Heat //Dimensions of Strip w = 100*10^-6; //[m] Width L = .0035 ; //[m] Long d = 3000*10^-10; //[m] Thickness delq = 3.5*10^-3; //[W] heating Rate delT1 =1.37 ; //[K] Temperature 1 f1 = 2*%pi ; //[rad/s] Frequency 1 delT2 =.71 ; //[K] Temperature 2 f2 = 200*%pi; //[rad/s] Frequency 2 A = [delT1 -delq/(L*%pi); delT2 -delq/(L*%pi)] ; C= [delq*-2.30*log10(f1/2)/(2*L*%pi); delq*-2.30*log10(f2/2)/(2*L*%pi)] ; B = inv(A)*C; alpha = k/(rho*c); delp = [(alpha/f1)^.5 (alpha/f2)^.5]; printf("\n C2 = %.2f k = %.2f W/m.K \n\n Thermal Penetration depths are %.2e m and %.2e m at frequency 2*pi rad/s and 200*pi rad/s" ,B(2),B(1), delp); //END