clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 5.2 Page 267 \n'); //Example 5.3 // Total Time t required for two step process //Operating Conditions ho = 40; //[W/m^2.K] Heat Convection coefficient hc = 10; //[W/m^2.K] Heat Convection coefficient k = 177; //[W/m.K] Thermal Conductivity e = .8; //Absorptivity L = 3*10^-3/2; //[m] Metre Ti = 25+273; //[K] Temp of Aluminium Tsurro = 175+273; //[K] Temp of duct wall heating Tsurrc = 25+273; //[K] Temp of duct wall Tit = 37+273; //[K] Temp at cooling Tc = 150+273; //[K] Temp critical stfncnstt=5.67*10^(-8); // [W/m^2.K^4] - Stefan Boltzmann Constant p = 2770; //[kg/m^3] density of aluminium c = 875; //[J/kg.K] Specific Heat //To assess the validity of the lumped capacitance approximation Bih = ho*L/k; Bic = hc*L/k; printf("\n Lumped capacitance approximation is valid as Bih = %f and Bic = %f", Bih, Bic); //Eqn 1.9 hro = e*stfncnstt*(Tc+Tsurro)*(Tc^2+Tsurro^2); hrc = e*stfncnstt*(Tc+Tsurrc)*(Tc^2+Tsurrc^2); printf("\n Since The values of hro = %.1f and hrc = %.1f are comparable to those of ho and hc, respectively radiation effects must be considered", hro,hrc); // Integration of the differential equation // dy/dt=-1/(p*c*L)*[ho*(y-Tsurro)+e*stfncnstt*(y^4 - Tsurro^4)] , y(0)=Ti, and finds the minimum time t such that y(t)=150 degC deff("[ydot]=f1(t,y)","ydot=-1/(p*c*L)*[ho*(y-Tsurro)+e*stfncnstt*(y^4 - Tsurro^4)]"); deff("[z]=g1(t,y)","z=y-150-273"); y0=Ti; [y,tc]=ode("root",y0,0,150+273,f1,1,g1); te = tc(1) + 300; //From equation 5.15 and solving the two step process using integration function Tydot=f(t,T) Tydot=-1/(p*c*L)*[ho*(T-Tsurro)+e*stfncnstt*(T^4 - Tsurro^4)]; funcprot(0) endfunction Ty0=Ti; t0=0; t=0:10:te; Ty=ode("rk",Ty0,t0,t,f); // solution of integration of the differential equation // dy/dt=-1/(p*c*L)*[hc*(y-Tsurrc)+e*stfncnstt*(y^4 - Tsurrc^4)] , y(rd(1))=Ty(43), and finds the minimum time t such that y(t)=37 degC=Tit deff("[Tdot]=f2(t,T)","Tdot=-1/(p*c*L)*[hc*(T-Tsurrc)+e*stfncnstt*(T^4 - Tsurrc^4)]"); for(tt=0:1:900) tq=ode(Ty(43),0,tt,f2); if(tq-Tit<=10^-2) break; end end function Ty2dot=f2(t,T) Ty2dot=-1/(p*c*L)*[hc*(T-Tsurrc)+e*stfncnstt*(T^4 - Tsurrc^4)]; funcprot(0) endfunction Ty20=Ty(43); t20=te; t2=te:10:1200; Ty2=ode("rk",Ty20,t20,t2,f2); clf(); plot(t,Ty-273,t2,Ty2-273,[tc(1) tc(1)],[0 Tc-273],[te te],[0 Ty(43)-273],[tt+te tt+te],[0 tq-273]); xtitle('Plot of the Two-Step Process','t (s)','T (degC)'); legend('Heating','Cooling','tc','te','tt'); printf('\n\n Total time for the two-step process is t = %i s with intermediate times of tc = %i s and te = %i s.',tt+te,tc(1),te); //END