clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 5.2 Page 265 \n'); //Example 5.2 // Steady State Temperature of junction // Time Required for thermocouple to reach a temp that is within 1 degc of its steady-state value //Operating Conditions h = 400; //[W/m^2.K] Heat Convection coefficient k = 20; //[W/m.K] Thermal Conductivity of Blade c = 400; //[J/kg.K] Specific Heat e = .9; //Absorptivity rho = 8500; //[kg/m^3] Density Ti = 25+273; //[K] Temp of Air Tsurr = 400+273; //[K] Temp of duct wall Tg = 200+273; //[K] Temp of Gas Stream TimeConstt = 1; //[sec] stfncnstt=5.67*10^(-8); // [W/m^2.K^4] - Stefan Boltzmann Constant //From Eqn 5.7 D = 6*h*TimeConstt/(rho*c); As = %pi*D^2; V = %pi*D^3/6; //Balancing Energy on thermocouple Junction //Newton Raphson method for 4th order eqn T=500; while(1>0) f=(e*stfncnstt*(Tsurr^4-T^4)-(h*(T-Tg))); fd=(-3*e*stfncnstt*T^3)-h; Tn=T-f/fd; if((e*stfncnstt*(Tsurr^4-Tn^4)-(h*(Tn-Tg)))<=.01) break; end; T=Tn; end printf("\n (a) Steady State Temperature of junction = %.2f degC\n",T-273); //Using Eqn 5.15 and Integrating the ODE // Integration of the differential equation // dT/dt=-A*[h*(T-Tg)+e*stefncnstt*(T^4-Tsurr^4)]/(rho*V*c) , T(0)=25+273, and finds the minimum time t such that T(t)=217.7+273.15 deff("[Tdot]=f(t,T)","Tdot=-As*[h*(T-Tg)+e*stfncnstt*(T^4-Tsurr^4)]/(rho*V*c)"); deff("[z]=g(t,T)","z=T-217.7-273"); T0=25+273;ng=1; [T,rd]=ode("roots",T0,0,217.7+273,f,ng,g); printf("\n (b) Time Required for thermocouple to reach a temp that is within 1 degc of its steady-state value = %.2f s\n",rd(1)); //END