clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 3.5 Page 119 \n'); //Example 3.5 // Critical Thickness k = .055; //[W/m.K] From Table A.3, Cellular glass at Temp 285K h = 5; //[W/m^2.K] ri = 5*10^-3; //[m] radius of tube rct = k/h; // [m] Critical Thickness of Insulation for maximum Heat loss or minimum resistance x = linspace(0,.07,100); ycond=(2.30*log10((x+ri)/ri)/(2*%pi*k)); yconv=(2*%pi*(x+ri)*h)^-1; ytot=yconv+ycond; clf(); plot(x,ycond,x,yconv,x,ytot); xtitle("Resistance vs Radii", "r-ri (m)", "R (m.K/W)"); legend ("Rcond", "Rconv", "Rtotal"); printf("\n\n Critical Radius is = %.3f m \n Heat transfer will increase with the addition of insulation up to a thickness of %.3f m",rct,rct-ri); //END