clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 3.1 Page 104 \n') //Example 3.1 // Find Skin Temperature & Aerogel Insulation Thickness A=1.8; // [m^2] Area for Heat transfer i.e. both surfaces Ti = 35+273; //[K] - Inside Surface Temperature of Body Tsurr = 10+273; //[K] - Temperature of surrounding Tf = 283; //[K] - Temperature of Fluid Flow e=.95; // Emissivity of Surface Lst=.003; //[m] - Thickness of Skin kst=.3; // [W/m.K] Effective Thermal Conductivity of Body kins = .014; // [W/m.K] Effective Thermal Conductivity of Aerogel Insulation hr = 5.9; //[W/m^2.k] - Natural Thermal Convectivity from body to air stfncnstt=5.67*10^(-8); // [W/m^2.K^4] - Stefan Boltzmann Constant q = 100; //[W] Given Heat rate //Using Conducion Basic Eq 3.19 Rtot = (Ti-Tsurr)/q; //Also //Rtot=Lst/(kst*A) + Lins/(kins*A)+(h*A + hr*A)^-1 //Rtot = 1/A*(Lst/kst + Lins/kins +(1/(h+hr))) //Thus //For Air, h=2; //[W/m^2.k] - Natural Thermal Convectivity from body to air Lins1 = kins * (A*Rtot - Lst/kst - 1/(h+hr)); //For Water, h=200; //[W/m^2.k] - Natural Thermal Convectivity from body to air Lins2 = kins * (A*Rtot - Lst/kst - 1/(h+hr)); Tsa=305; //[K] Body Temperature Assumed //Temperature of Skin is same in both cases as Heat Rate is same //q=(kst*A*(Ti-Ts))/Lst Ts = Ti - q*Lst/(kst*A); //Also from eqn of effective resistance Rtot F printf("\n\n (I) In presence of Air, Insulation Thickness = %.1f mm",Lins1*1000) printf("\n (II) In presence of Water, Insulation Thickness = %.1f mm",Lins2*1000); printf("\n\n Temperature of Skin = %.2f degC",Ts-273); //END