clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 13.7 Page 841 \n')// Example 13.7 // Rate at which heat must be supplied // Temperature of the insulated surface T1 = 1000 ;//[K] Temperature of Heated Surface e1 = .8 ;// emissivity of Heated Surface e2 = .8 ; // emissivity of Insulated Surface r = .02 ;//[m] Radius of surface Tm = 400 ;//[K] Temperature of surrounding air m = .01 ;//[kg/s] Flow rate of surrounding air p = 101325 ;//[Pa] Pressure of surrounding air stfncnstt = 5.670*10^-8 ;//[W/m^2.K^4] Stefan Boltzman Constant //Table A.4 Air Properties at 1 atm, 400 K k = .0338 ;//[W/m.K] conductivity u = 230*10^-7 ;//[kg/s.m] Viscosity cp = 1014 ;//[J/kg] Specific heat Pr = .69 ;// Prandtl Number //Hydraulic Diameter Dh = 2*%pi*r/(%pi+2) ;//[m] //Reynolds number Re = m*Dh/(%pi*r^2/2)/u; //View Factor F12 = 1 ; printf("\n As Reynolds Number is %i, Hence it is Turbulent flow inside a cylinder. Hence we will use Dittus-Boelter Equation",Re); //From Dittus-Boelter Equation Nu = .023*Re^.8*Pr^.4; h = Nu*k/Dh; //[W/m^2.K] //From Equation 13.18 Heat Energy balance //Newton Raphson T2=600; //Initial Assumption while(1>0) f=(stfncnstt*(T1^4 - T2^4)/((1-e1)/(e1*2*r)+1/(2*r*F12)+(1-e2)/(e2*%pi*r)) - h*%pi*r*(T2-Tm)); fd=(4*stfncnstt*( - T2^3)/((1-e1)/(e1*2*r)+1/(2*r*F12)+(1-e2)/(e2*%pi*r)) - h*%pi*r*(T2)); T2n=T2-f/fd; if(stfncnstt*(T1^4 - T2n^4)/((1-e1)/(e1*2*r)+1/(2*r*F12)+(1-e2)/(e2*%pi*r)) - h*%pi*r*(T2n-Tm))<=.01 break; end; T2=T2n; end //From energy Balance q = h*%pi*r*(T2-Tm) + h*2*r*(T1-Tm) ;//[W/m] printf('\n Rate at which heat must be supplied per unit length of duct = %.2f W/m & Temperature of the insulated surface = %i K',q,T2);