clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 13.6 Page 836 \n')// Example 13.6 // Rate at which heat must be supplied per unit length of duct // Temperature of the insulated surface T2 = 500 ;//[K] Temperature of Painted surface e2 = .4 ;// emissivity of Painted Surface T1 = 1200 ;//[K] Temperature of Heated Surface W = 1 ; //[m] Width of Painted Surface e1 = .8 ;// emissivity of Heated Surface er = .8 ;// emissivity of Insulated Surface stfncnstt = 5.670*10^-8 ;//[W/m^2.K^4] Stefan Boltzman Constant //By Symmetry Rule F2R = .5; F12 = .5; F1R = .5; //From Equation 13.20 Heat balance q = stfncnstt*(T1^4-T2^4)/((1-e1)/e1*W+ 1/(W*F12+[(1/W/F1R) + (1/W/F2R)]^-1) + (1-e2)/e2*W) ;//[W/m] //Surface Energy Balance 13.13 J1 = stfncnstt*T1^4 - (1-e1)*q/(e1*W) ;// [W/m^2] Surface 1 J2 = stfncnstt*T2^4 - (1-e2)*(-q)/(e2*W) ;// [W/m^2] Surface 2 //From Equation 13.26 Heat balance JR = (J1+J2)/2; TR = (JR/stfncnstt)^.25; printf('\n Rate at which heat must be supplied per unit length of duct = %.2f kW/m \n Temperature of the insulated surface = %i K',q/1000,TR);