clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 13.3 Page 826 \n')// Example 13.3 // Net rate of Heat transfer to the absorber surface L = 10 ;//[m] Collector length = Heater Length T2 = 600 ;//[K] Temperature of curved surface A2 = 15 ;//[m^2] Area of curved surface e2 = .5 ;// emissivity of curved surface stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-Boltzmann constant T1 = 1000 ;//[K] Temperature of heater A1 = 10 ;//[m^2] area of heater e1 = .9 ;// emissivity of heater W = 1 ;//[m] Width of heater H = 1 ;//[m] Height T3 = 300 ;//[K] Temperature of surrounding e3 = 1 ;// emissivity of surrounding J3 = stfncnstt*T3^4; //[W/m^2] //From Figure 13.4 or Table 13.2, with Y/L = 10 and X/L =1 F12 = .39; F13 = 1 - F12; //By Summation Rule //For a hypothetical surface A2h A2h = L*W; F2h3 = F13; //By Symmetry F23 = A2h/A2*F13; //By reciprocity Eb1 = stfncnstt*T1^4; //[W/m^2] Eb2 = stfncnstt*T2^4; //[W/m^2] //Radiation network analysis at Node corresponding 1 //-10J1 + 0.39J2 = -510582 //.26J1 - 1.67J2 = -7536 //Solving above equations A = [-10 .39; .26 -1.67]; B = [-510582; -7536]; X = inv(A)*B; q2 = (Eb2 - X(2))/(1-e2)*(e2*A2); printf('\n Net Heat transfer rate to the absorber is = %.1f kW',q2/1000);