clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 11.3 Page 692 \n'); //Example 11.3 // Required gas side surface area //Operating Conditions Tho = 100+273 ;//[K] Hot Fluid outlet Temperature Thi = 300+273 ;//[K] Hot Fluid intlet Temperature Tci = 35+273 ;//[K] Cold Fluid intlet Temperature Tco = 125+273 ; //[K] Cold Fluid outlet Temperature mc = 1 ;//[kg/s] Cold Fluid flow rate Uh = 100 ;//[W/m^2.K] Coefficient of heat transfer //Table A.5 Water Properties T = 353 K cph = 1000 ; //[J/kg.K] Specific Heat //Table A.6 Saturated water Liquid Properties Tc = 308 K cpc = 4197 ; //[J/kg.K] Specific Heat Cc = mc*cpc; //Equation 11.6b and 11.7b Ch = Cc*(Tco-Tci)/(Thi-Tho); // Equation 11.18 qmax = Ch*(Thi-Tci); //Equation 11.7b q = mc*cpc*(Tco-Tci); e = q/qmax; ratio = Ch/Cc; printf("\n As effectiveness is %.2f with Ratio Cmin/Cmax = %.2f, It follows from figure 11.14 that NTU = 2.1",e,ratio); NTU = 2.1; A = 2.1*Ch/Uh; printf("\n Required gas side surface area = %.1f m^2",A); //END