clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 10.4 Page 652 \n'); //Example 10.4 // Condensation rate per unit length of tubes //Operating Conditions Ts = 25+273 ;//[K] Surface Temperature Tsat = 54+273 ;//[K] Saturated Temperature D = .006 ; //[m] Diameter of pan g = 9.81 ;//[m^2/s] gravitaional constant N = 20 // No of tubes //Table A.6 Saturated Vapor Properties p = 1.015 bar rhov = .098 ;//[kg/m^3] Density hfg = 2373*10^3 ;//[J/kg] Specific Heat //Table A.6 Saturated water Liquid Properties Tf = 312.5 K rhol = 992 ;//[kg/m^3] Density cpl = 4178 ;//[J/kg.K] Specific Heat kl = 0.631 ; //[W/m.K] Conductivity ul = 663*10^-6 ; //[N.s/m^2] Viscosity Ja = cpl*(Tsat-Ts)/hfg; hfg2 = hfg*(1+.68*Ja); //Equation 10.46 h = .729*[g*rhol*(rhol-rhov)*kl^3*hfg2/(N*ul*(Tsat-Ts)*D)]^.25; //Equation 10.34 m1 = h*(%pi*D)*(Tsat-Ts)/hfg2; m = N^2*m1; printf("\n For the complete array of tubes, the condensation per unit length is %.3f kg/s.m",m); //END